Vanishing Cycles in Complex Symplectic Geometry
نویسندگان
چکیده
منابع مشابه
Vanishing Cycles in Complex Symplectic Geometry
We study the vanishing cycles on the Milnor fibre for some non-isolated singularities which appear naturally in symplectic geometry. Under assumptions given in the text, we show that the vanishing cycles associated to a distinguish basis freely generate the corresponding homology groups of the Milnor fibre. We derive some consequences of this fact, in particular for the study of adjoint orbits ...
متن کاملVanishing Cycles and Monodromy of Complex Polynomials
In this paper we describe the trivial summand for monodromy around a fibre of a polynomial map C → C, generalising and clarifying work of Artal Bartolo, Cassou-Noguès and Dimca [2], who proved similar results under strong restrictions on the homology of the general fibre and singularities of the other fibres. They also showed a polynomial map f : C → C has trivial global monodromy if and only i...
متن کاملVanishing Vanishing Cycles
If A• is a bounded, constructible complex of sheaves on a complex analytic space X, and f : X → C and g : X → C are complex analytic functions, then the iterated vanishing cycles φg[−1](φf [−1]A •) are important for a number of reasons. We give a formula for the stalk cohomology H∗(φg[−1]φf [−1]A •)x in terms of relative polar curves, algebra, and the normal Morse data and micro-support of A•.
متن کاملComplex of twistor operators in symplectic spin geometry
For a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure), we construct a sequence consisting of differential operators using a symplectic torsion-free affine connection. All but one of these operators are of first order. The first order ones are symplectic analogues of the twistor operators known from Riemannian spin geometry. We prove...
متن کاملSymplectic Geometry
1 Symplectic Manifolds 5 1.1 Symplectic Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Symplectic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Cotangent Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Moser’s Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Darboux and Moser Theorems . . . . . . . . . . . . . . . ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Moscow Mathematical Journal
سال: 2008
ISSN: 1609-3321,1609-4514
DOI: 10.17323/1609-4514-2008-8-1-73-90